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Chapter 1

Running free-energy
simulations

1.1 Driven Adiabatic Free Energy Dynamics
(dAFED)

The driven adiabatic free energy (dAFED) algorithm [I] is also called tem-
perature accelerated molecular dnamics (TAMD) by other authors [2]. In
fact, dAAFED/TAMD is an improvement over the earlier AFED method [3], 4],
which required cumbersome coordinates transformations. In the dJAFED/TAMD
method, an extra dynamical variable S is coupled to a collective variable s(r),
where r represents the coordinates of a number N of atoms in the system.
The coupling is mediated by a potential energy function with harmonic con-
stant s,

V(S,s(r)) = ;n‘ (S —s(r))”.

(1.1)

The dynamics of the S meta-variable is adiabatically decoupled from
the dynamics of the underlying physical system by choosing a large mass
mg > m, where m is a typical mass of the physical system. Thanks to the
adiabatic separation, a temperature Ts > 71" can be assigned to the S meta-
variable. With this choice of mg and T}, the physical system will evolve fast
at room temperature 7" around the instantaneous value of s(r) = S . On
the other hand, S will evolve slowly, but have a temperature large enough to
drive the system over high free energy barriers.



In the limit of Kk — oo, it can be shown that the free energy surface
at temperature T can be recovered from the density p*"(S) sampled at
temperature Tg during the adiabatic dAFED simulation using

G(S) = —kpTslog (p™(S)) . (1.2)

This result generalizes well to the case where more than one collective variable
is used and G(.9) is a multi-dimensional free energy surface.

The dAFED method requires very efficient thermostatting of the meta-
variable S. In the present implementation, S is coupled to a Generalized
Gaussian Moment Thermostat (GGMT) [5] or to a Langevin thermostat [6].
If multiple reaction coordinates are used, one separate GGMT or Langevin
thermostat is associated to each of them.

In the case of GGMT, the meta-variable is coupled to two thermostatting
variables p, and p¢, with associated masses @), and @)¢, respectively. Given
a typical time scale 7 of the thermostated system, optimal masses are @), =
kpTsm? and Q¢ = 3(kpTs)?r®. The order-2 GGMT dynamics for one degree
of freedom is
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The implemented integrator for the dynamics above is based on a Trotter
decomposition of the corresponding Liouville operator [I]. The quality of
the integration can be monitored using the quantity Hg, which would be
conserved if the dynamics of S was decoupled from the physical system,
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The heat transfer Wg from the meta-variable to the physical system can
be calculated,

st/ dt's (S — s(r)) fjs (1.8)

HS(S7p57777p777 C;pC) =



The effective adiabaticity of the coupling can thus be asserted. In addi-
tion, for each extended variable S, the quantity Hg + Wy should be strictly
conserved, which provides a quality check for the simulation. In addition,
Let H be the pseudo-energy of the physical system including the associ-
ated thermostats and barostats. Then the total energy of the simulation,
H + Z?Zl Hsg;, should be conserved as well. As a corollary, considering the
physical system only, the quantity H — Z;-lzl Wy, should be conserved.

A different way to assess the adiabaticity of the simulation is through the
configurational temperature of the collective variable s,

_ (VU _ s 2
Tconﬁg - %W = % <(S — S) > (19)

For a system at equilibrium the configurational temperature should be equiv-
alent to the kinetic temperature and the heat bath temperature. A higher
configurational temperature is a signature of nonequilibrium dynamics, in
which a significant heat flow would take place between extended and physi-
cal system.

In practice, the choice of mg is subject to some pragmatic considerations.
The value of mg should be as high as possible to ensure good adiabatic sep-
aration. However, given the limited planned simulation time, the evolution
of S has to be fast enough to correctly sample the CV range of interest.
By running a short dAFED simulation and plotting the evolution of S, one
can estimate an average diffusion speed. From that, a maximum admissible
value for mg can be deduced, such that S can cross many time the CV range
during the simulation.

The choice of the coupling constant x determines the resolution of the
observed free energy surface G(S). Ideally, x should be very large, but its
value is limited by the requirement of integrating accurately the coupling
term, Eq. [[.L] The typical period of that harmonic oscillator is given by
T = 2my/ /K, where g = mgmeg /(s + meg) is the reduced mass, with meg
the effective mass of the CV s(r). For a one-dimensional CV, meg can be
expressed as

e [Z ()m] w10

Note that if the CV is multidimensional the situation is slightly more
complicated and meg is in fact a tensor, whose diagonal elements are given



by Eq.[I.I0] Nevertheless, meg can be used to estimate an order of magnitude
for the period 7 for each CV, and thus estimate which time step is appropriate
for a given mg (or vice versa). It is recommended to check that the time step
is appropriate for the chosen x by plotting the evolution of s(r) and S from
a short simulation in which the dAFED variables are saved very frequently.

1.1.1 Input for dAFED

For each CV, a DAFED directive is used to define the parameters of the cor-
responding dynamics. On the same line, the number of the CV to which the
directive applies is specified after the keyword CV. The temperature Ts in
K is given after keyword TEMPERATURE. The thermostat time constant 7 is
given in ps after keyword TAUTHERMO. The mass mg and harmonic constant
Kk, are given after the keywords MASS and KAPPA, respectively. The units of
and mg depend on the nature of the CV. They should always be such that
k52 and mS? are both in units of energy (kJ/mol= amu nm? / ps?), see the
example below.

In addition, tow optional keywords can be used with the DAFED directive.
First, for periodic CVs such as torsion angles, the S variable should also
evolve on a periodic interval. This is specified by the keyword PERIODIC,
followed by two numbers for the lower and upper bounds. The numbers can
be replaced by MINUS_PI, PLUS_PI, or PLUS_2PI to specify —m, +m, or 42,
respectively.

The optional keyword JACOBIAN FORCE causes a bias force F' = —2kgT/S
to be applied to the dynamics of S. This is useful with distance CVs in order
to counterbalance the effect of the Jacobian factor and sample a more uniform
distribution along the CV.



Example.

The following lines couple CV 1 (a distance in nm) to a meta-variable of mass 10° amu with a harmonic
constant of 106 kd/mol/nm? and CV 2 (a unitless number) to a meta-variable with mass 103 amu*nm?
with a harmonic constant of 10* kJ/mol. For both CV, the dAFED temperature is 600 K and the GGMT
thermostat time constant is 0.2 ps. See text for the optional keywords JACOBIAN_FORCE and PERIODIC.

DISTANCE LIST 1 34
TORSION LIST 5 15 29 36

DAFED CV 1 TEMPERATURE 600 MASS 1e5 KAPPA 1e6 TAUTHERMO 0.2 JACOBIAN_FORCE
DAFED CV 2 TEMPERATURE 600 MASS 1e3 KAPPA 1e4 TAUTHERMO 0.2 PERIODIC MINUS_PI PLUS_PI

DAFED_CONTROL RESTART checkpoint_file WRITE_STATE -1 N_RESPA 1

PRINT W_STRIDE 100
ENDMETA

A separate DAFED_CONTROL directive contains general controls for the
dAFED simulation. The dAFED dynamics, including all variables described
in Egs. - can be restarted exactly from a previous run using a check-
point file. Following the WRITE_STATE keyword appears the number of steps
after which a checkpoint file is saved. A value of —1 implies that a check-
point file is written only when GROMACS saves its own checkpoint file, i.e.
at regular wall clock time intervals. The checkpoint file is saved in the current
directory with default name DAFED_STATE. The optional keyword RESTART is
used to specify the path to the checkpoint file from which to restart.

The integrator for S can be selected on the DAFED_CONTROL line with the
keyword INTEGRATOR, followed by either GGMT (default) or LANGEVIN_EM for
Langevin evolution with the simple Euler-Maruyama integrator, or LANGEVIN_CV
for Langevin evolution with the integrator of Ciccotti-Vanden Eijnden [6].
Specifying LANGEVIN defaults to LANGEVIN_EM.

With a high value of x (as required by the dAAFED method), oscillations
of s(r) can become faster than the fastest mode in the physical system. This
would in principle require choosing a smaller time step, at the expense of
sampling efficiency. Instead, following a multiple time step approach, the
dAFED force can be integrated more often than the forces in the physical
system. This feature is implemented only with GROMACS and the GGMT
thermostat. The user has to divide the general MD time step by a number
Nrgspa (typically between 2 and 10). The optional keyword N_RESPA followed
by the number Nggspa in the DAFED_CONTROL directive instructs GROMACS
to evaluate the physical forces only every Nrgspa steps. Together with the
md-vv integrator of GROMACS, this should produce a correct RESPA [7]



scheme in the NVT ensemble. With this, nstcalcenergy = 1 has to be set
in the GROMACS input file. Note that this feature is still experimental and
energy conservation should be checked.

1.1.2 Typical output for dAFED

With the dAFED method, the COLVAR file will contain the following data, if
d collective variables are used:

e time step

e value of the collective variable sq(r)...sq(r)
Then for each of the S;, j = 1...d, appears a set of 5 columns with :

e the meta-variable S

e the instantaneous temperature of S in K

e the conserved quantity Hg, see Eq. in kJ/mol

e the work Wy from S to the physical system, see Eq. , in kJ/mol

e the effective mass meg according to Eq.[1.10] in a.m.u.

These fields are labeled sj, T_sj, E_sj, W_sj, and M_effj respectively,
in the COLVAR header line, j = 1...d. Additional collective variables can be
monitored during a dAFED run, in which case more columns will appear
before the first set of dAFED fields. For long production runs, the user
can choose a more compact form of output in which only the CV s,(r) and
the position S; of each corresponding extended variable are printed. This is
achieved by adding the keyword PRINT NO_DETAILS on the DAFED_CONTROL
input line.

1.1.3 Unified Free Energy Dynamics (UFED)
UFED is a recent extension [§] of the AAFED/TAMD method which allows

to combine the benefits of high temperature extended variables with adaptive
bias potentials similar to those used in metadynamics. The UFED method
rests on the fact that the free energy surface can be reconstructed from the



thermodynamic force F(S) instead of the histogram p*d"(.9). Indeed, in the
spirit of the well-known thermodynamic integration technique, we can write

F(S) = —VsGs(9) (1.11)
N Z(ls) /dr K(s(r) — §) e PlUM+5(s(r)=5)7] (1.12)
_ <fr_>s>5 (1.13)

The last line represents the force exerted by the physical system on the
extended variable, averaged at a fixed position of S. This average can easily
be obtained in a post processing phase from the values of S and s(r) stored
in the COLVAR file using a grid in the S space. Note that due to the fast oscil-
lations of s(r), samples should be collected at high frequency. Finally, F(S5)
is integrated numerically to get the free energy profile. In dimensions greater
than one, F(S) will not exactly be a consistent multidimensional gradient,
due to statistical noise. The PMF can however easily be reconstructed as the
surface G(S) whose discrete derivative best fits F(.S) in the least-squares
sense. This postprocessing step provides the additional benefit of producing
a smooth PMF.

The second fundamental ingredient for the UFED method is that, if the
adiabatic separation is effective, F(.S) does not depend on the actual distri-
bution of s [§]. If this holds, we can introduce a bias potential of any kind
acting on S. We introduce a Gaussian-based adaptive potential

d (8- 8O (k)
Vbias(S,t) =h Y exp | =D ( 952 ) ’

kT<t i=1

(1.14)

which is similar to the metadynamics bias potential, except that it acts on the
extended variables S instead of the CV s(r). UFED has several advantages
over its parent methods. First, the adaptive bias allows using a lower temper-
ature than dAFED, which facilitates obtaining effective adiabatic separation.
Second, the use of the force to construct the free energy surface (instead of
the sum of hills in metadynamics) makes the final accuracy of UFED inde-
pendent of the hill size, and does not require that all basins are filled up with
hills.

In order to activate UFED, the user only needs to add a line with the
directive UFED_HILLS in addition to the DAFED and DAFED_CONTROL directives
described above (see example below). For most aspects, UFED_HILLS works



just as the HILLS directive of metadynamics. It must be followed by a key-
word HEIGHT after which the value of h is specified, see Eq. . The
hill deposition stride is specified after the keyword W_STRIDE. The Gaussian
widths o; are taken from the keywords SIGMA specified on the line of each
CV,i=1,..,d.

Some collective variables have intrinsic domain limitations (such as the
number of H-bonds that cannot be smaller than zero), or the user might
want to impose limitations (such as the maximum distance to which a ligand
can be separated from it’s host). In these cases, it is useful to impose the
limitations to the domain of the S variables, which are otherwise unbounded.
This is especially necessary when a bias potential is used. One way to do
this without perturbing the distribution of S within the range of interest is
to use reflective walls at which the momentum Ps is inverted.

Reflective walls are activated with the directives LREFLECT and UREFLECT,
corresponding to a lower or upper limit, respectively. The CV on which the
reflective wall acts is specified after the keyword CV and the limit value is
given after the keyword LIMIT. If UFED HILLS and LREFLECT or UREFLECT
are active, extra hills are added at a symmetrical position on the other side
of the wall as soon as S; is closer than 30; to the wall. This prevents the
formation of an artificial ditch in the bias potential close to the wall [9].

Example.

The following example shows how to setup a UFED run. CV 1 (a distance in nm) is coupled with a
harmonic constant of 105 kd/mol/nm? to a meta-variable of mass 10 a.m.u. at temperature 400 K. In this
case we have specified a Langevin integrator for this meta-variable and we print a compact COLVAR file.
For UFED, we deposit every 1000 steps a hill of height 0.5 kd/mol and width 0.1 nm. In addition, we have
restricted the space of the meta-variable with a lower reflection wall at 0.1 nm and an upper reflection
wall at 1.5 nm.

DISTANCE LIST 1 2 SIGMA 0.1

DAFED CV 1 TEMPERATURE 400 MASS 1e6 KAPPA 1e5 TAUTHERMO 0.5
DAFED_CONTROL WRITE_STATE -1 INTEGRATOR LANGEVIN PRINT_NO_DETAILS

UFED_HILLS HEIGHT 0.5 W_STRIDE 1000

LREFLECT CV 1 LIMIT 0.1
UREFLECT CV 1 LIMIT 1.5

PRINT W_STRIDE 100
ENDMETA

We note that, in addition to G(S5), it is possible to calculate the ensemble
average of any observable A(r) in during a JAFED or UFED simulation, even
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if the distribution of states is different form the canonical ensemble at low
(physical) temperature. It can be shown [10] that if the adiabatic separation
is effective, we have

_ Jds (A)g e7PY

<A> - de e—ﬁG(S) ) (115)

where (A)g is the average value of A accumulated on a grid of fixed S posi-
tions. Here, G() is obtained from the same simulation by integrating values
of (frs)g accumulated on the same grid. The integral in Eq. is per-
formed numerically a posteriori. Using Eq. dAFED can for example
be combined [10] with thermodynamic integration (A = dH/d\) or free en-
ergy perturbation (A = exp[—/f AH(A)]) to calculate alchemical free energy
differences in flexible molecules.
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